Let's rewrite and simplify the inequality
(3x+1)/(x+4)<=1
(3x+1)/(x+4)-1<=0
((3x+1)-(x+4))/(x+4)<=0
((2x-3))/(x+4)<=0
Let f(x)=((2x-3))/(x+4)
Now, we can build the sign chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaaa)-4color(white)(aaaaaaa)3/2color(white)(aaaa)+oo
color(white)(aaaa)x+4color(white)(aaaaaa)-color(white)(aa)0color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)2x-3color(white)(aaaaa)-color(white)(aa)#color(white)(aaaaa)-#color(white)(aa)0color(white)(aa)+
color(white)(aaaa)f(x)color(white)(aaaaaaa)+color(white)(aa)||color(white)(aaaa)-color(white)(aa)0color(white)(aa)+
Therefore,
f(x)<=0 when x in (-4,3/2] or -4 < x <= 3/2
graph{(3x+1)/(x+4)-1 [-27.09, 18.51, -12.22, 10.59]}