How do solve (2x)/(x-2)<=3 algebraically?

2 Answers
Aug 6, 2018

Multiply both sides by x-2

2x<=3(x-2)

Distribute the 3

2x<=3x-6

Move x terms to one side

-x<=-6

Divide out negative one from both sides

x>=6

*When dividing or multiplying by a negative, you have to switch the greater or less than sign.

Aug 7, 2018

x in(-00,2)uu[6,oo)

Explanation:

"subtract 3 from both sides"

(2x)/(x-2)-3<=0

"combine the left side as a single fraction"

(2x)/(x-2)-(3(x-2))/(x-2)<=0

(6-x)/(x-2)<=0

"find the critical values of numerator/denominator"

6-x=0rArrx=6larrcolor(blue)"is a zero"

x-2=0rArrx=2

"these values divide the domain into 3 intervals"

(-oo,2)uu(2,6]uu[6,oo)

"select a value for x as a "color(red)"test point in each interval"

x=1to(6-1)/(1-2)=-5<0larrcolor(blue)"valid"

x=3to(6-3)/(3-2)=3>0larrcolor(blue)"not valid"

x=10to(6-10)/(10-2)=-1/2<0larrcolor(blue)"valid"

x in(-oo,2)uu[6,oo)
graph{(2x)/(x-2)-3 [-10, 10, -5, 5]}