Let's rewrite and factorise the inequality
2x^3+x^2>6x
2x^3+x^2-6x>0
x(2x^2+x-6)>0
x(2x-3)(x+2)>0
Let f(x)=x(2x-3)(x+2)
We can build the sign chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-2color(white)(aaaaa)0color(white)(aaaaa)3/2color(white)(aaaaaa)+oo
color(white)(aaaa)x+2color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaaa)+
color(white)(aaaa)xcolor(white)(aaaaaaaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaaa)+
color(white)(aaaa)2x-3color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaaa)+
color(white)(aaaa)f(x)color(white)(aaaaaaa)-color(white)(aaaa)+color(white)(aaaa)-color(white)(aaaaa)+
Therefore,
f(x)>0 when -2 < x < 0 and x > 3/2
Or in interval notation, x in ]-2,0[uu]3/2,+oo[