lim_(h->0) (f(x+h)-f(x))/h
f(x)=1/x
f(x+h)=1/(x+h)
Substitute in these values
lim_(h->0) (1/(x+h)-1/x)/h
Get common denominator for the numerator of the complex fraction.
f'(x)=lim_(h->0) (x/x*1/(x+h)-1/x*(x+h)/(x+h))/h
f'(x)=lim_(h->0) (x/(x(x+h))-(x+h)/(x(x+h)))/h
f'(x)=lim_(h->0) ((x-x-h)/(x(x+h)))/h
f'(x)=lim_(h->0) ((-h)/(x(x+h)))/h
f'(x)=lim_(h->0) (-h)/(x(x+h))*1/h
f'(x)=lim_(h->0) (-h)/(xh(x+h))
f'(x)=lim_(h->0) (-1)/(x(x+h))
f'(x)=(-1)/(x(x+0))
f'(x)=(-1)/(x(x))
f'(x)=(-1)/(x^2)
f'(3)=(-1)/((3)^2)=-1/9
Alternative method
Now take the derivative of f(x) using the power rule.
f(x)=1/x=x^-1
f'(x)=-1x^-2=-1/x^2
f'(3)=-1/(3)^2=-1/9