How do i solve for r?

A = 2pir^2 +2pirh

1 Answer

r = -h/2 \pm (sqrt(pi(pih^2+2A))) / (2pi)

Explanation:

A=2pir^2+2pirh

We want to put this into a form that looks like:

ar^2+br+c=0, where a,b,c are constants.

because we can then use the quadratic formula to solve it. So let's go back to the question:

2pir^2+2pirh-A=0

Notice that we can set:

  • a=2pi
  • b=2pih
  • c=-A

Now let's use the quadratic formula:

r = (-b \pm sqrt(b^2-4ac)) / (2a)

Substituting in:

r = (-(2pih) \pm sqrt((2pih)^2-4(2pi)(-A))) / (2(2pi))

r = -h/2 \pm (sqrt(4pi^2h^2+8piA)) / (4pi)

r = -h/2 \pm (sqrt((4pi)(pih^2+2A))) / (4pi)

r = -h/2 \pm (sqrt(pi(pih^2+2A))) / (2pi)