How do I solve csc^2x-2cscx = 2 - 4sinx for [0,2pi)?

csc^2x-2cscx = 2 - 4sinx for [0, 2pi)

1 Answer
May 19, 2018

csc^2x-2cscx = 2 - 4sinx

=>(csc^2x-2cscx) - (2 - 4sinx)=0

=>csc^2x(1-2/cscx) - 2(1 - 2sinx)=0

=>csc^2x(1-2sinx) - 2(1 - 2sinx)=0

=>(csc^2x - 2)(1 - 2sinx)=0

So csc^2x=2

=>sinx=pm1/sqrt2

When sinx=1/sqrt2=sin(pi/4)=sin (pi-pi/4)

=>x=pi/4 or (3pi)/4

When sinx=-1/sqrt2==sin (pi+pi/4)=sin(2pi-pi/4)

=>x=(5pi)/4 or (7pi)/4

Again when

1-2sinx=0

=>sinx=1/2=sin(pi/6)=sin(pi-pi/6)

=>x=pi/6or(5pi)/6