How do I solve 6csc^2x=cotx+8 if o<x<360?

1 Answer
May 15, 2018

See below

Explanation:

6csc^2x=cotx+8

Using csc^2x= 1+cot^2x:
6(1+cot^2x)=cotx+8

6cot^2x-cotx-2=0

6cot^2-4cotx+3cotx-2=0

3cotx(2cotx+1)-2(2cotx+1)=0

cotx=2/3
Which is essentially:
tanx= 3/2

x=arctan(3/2)approx 56.31^@+180^@= 236.31^@
x= 56.31^@, 236.31^@

cotx= -1/2
Which is essentially:
tanx=-2

x= 296.57^@, 116.57^@