How do I solve #648x+353y=1# for #x# and #y# working backwards from Euclid's algorithm for #gcd(648,353)#?
1 Answer
Explanation:
To find
Now we have
#=3-2#
#=58-11*5-(5-3)#
#=58-12*5+(58-11*5)#
#=2*58-23*5#
#=2(353-295)-23(295-5*58)#
#=2*353-25*295+115*58#
#=2*353-25(648-353)+115(353-295)#
#=142*353-25*648-115*295#
#=2*353-25(648-353)+115(353-295)#
#=142*353-25*648-115*(648-353)#
#=-140(648)+257(353)# so
#x=-140# and#y=257#