How do I solve 1-sinx=3cosxfor [0, 2)? Thank you!

1-sinx=3cosx for [0,2pi)

1 Answer
Feb 9, 2018

x=pi/2,-0.9273..+2pi

Explanation:

1-sinx=3cosx

(1-sinx)^2=(3cosx)^2

1-2sinx+sin^2x=9cos^2x

1-2sinx+sin^2x=9(1-sin^2x)

1-2sinx+sin^2x=9-9sin^2x

-8-2sinx+10sin^2x=0

Let u=sinx:

10u^2-2u-8=0

5u^2-u-4=0

(u-1)(5u+4)=0

u=1,-4/5

Plug sinx back in for u:

sinx=1, -4/5

x=pi/2,sin^-1(-4/5)~~-0.9273..

To get the second number in the wanted range, just add 2pi:

x=pi/2,-0.9273..+2pi