How do I solve 1-sinx = 3cosx for [0,2pi)?

1sinx=3cosx for [0,2π)

1 Answer
Mar 18, 2018

x=8977
x=30709

Explanation:

1 - sin x = 3cos x
sin x + 3cos x = 1 (1)
Call tant=3=sintcost=tan7157 --> cos t = 0.32
Equation (1) becomes:
sin x.cos t + sin t.cos x = cos t = 0.32
sin (x + t) = sin (x + 71.57) = 0.32
Calculator and unit circle give 2 solutions -->

a. x+71.57=1866 -->
x=18.6671.57=5291, or,
x=30709 (co-terminal to - 52.91)
b. x+71.57=18018.66=16134 -->
x=161.3471.57=8977
Check by calculator.
x = 307.09 --> sin x = - 0.8 --> 1 - sin x = 1 + 0.8 = 1.8
cos x = 0.6 --> 3cos x = 1.8. Proved.