How do i solve 1=2cos(3x-5pi) for [0,2)?

1=2cos(3x-5pi)1=2cos(3x5π) for [0,2pi)? [0,2π)?

1 Answer
Feb 14, 2018

x = +- (2pi)/9x=±2π9, or
x = +- 40^@x=±40

Explanation:

cos (3x - 5pi) = 1/2cos(3x5π)=12
cos (3x - 5pi) = cos (3x - pi) = - cos 3xcos(3x5π)=cos(3xπ)=cos3x -->
cos 3x = - 1/2cos3x=12
Trig table and unit circle give 2 solutions:
3x = +- (2pi)/33x=±2π3
x = +- (2pi)/9x=±2π9
Check by calculator:
x = (2pi)/9 = 40^@x=2π9=40 --> 2cos (3x - pi) = 2cos (120 - 180) =2cos(3xπ)=2cos(120180)=
= 2cos (-60) = 2cos 60 = 2(1/2) = 1=2cos(60)=2cos60=2(12)=1 Proved.