How do I prove that #sum_(i=1)^n(x_i-mu)^2=sum_(i=1)^n(x_i)^2-nmu^2#?
1 Answer
Aug 7, 2018
Start with:
#sum_(i=1)^n (x_i-mu)^2#
Within the sum, distribute the square:
#=sum_(i=1)^n (x_i-mu)(x_i-mu)#
#=sum_(i=1)^n (x_i^2-2x_i mu + mu^2)#
Distribute the sum notation to each term:
#=sum_(i=1)^n x_i^2- sum_(i=1)^n 2x_i mu + sum_(i=1)^n mu^2#
Factor out the
#=sum_(i=1)^n x_i^2- 2musum_(i=1)^n x_i + nmu^2#
Using
#=sum_(i=1)^n x_i^2- 2mu(nmu) + nmu^2#
#=sum_(i=1)^n x_i^2- 2nmu^2 + nmu^2#
Combine like terms:
#=sum_(i=1)^n x_i^2- nmu^2#
Done!