How do I prove #sec^2x/(2+tan^2x) = 1/(1+cos^2x)#?

2 Answers
Apr 28, 2018

See below

Explanation:

Using:
#cosx=1/secx#
#1+tan^2x=sec^2x#

START:

#sec^2x/(2+tan^2x)=1/(1+cos^2x)#

#sec^2x/(2+tan^2x)=1/(1+1/sec^2x)#

#sec^2x/(2+tan^2x)=1/(sec^2x/sec^2x+1/sec^2x)#

#sec^2x/(2+tan^2x)=1/((sec^2x+1)/sec^2x)#

#sec^2x/(2+tan^2x)=sec^2x/(sec^2x+1)#

#sec^2x/(2+tan^2x)=sec^2x/((1+tan^2x)+1)#

#sec^2x/(2+tan^2x)=sec^2x/(2+tan^2x) quad sqrt#

END

Apr 28, 2018

Kindly go through a Proof in the Explanation.

Explanation:

Knowing that, #sec^2x=tan^2x+1#,

we have, #sec^2x/(2+tan^2x)#,

#=sec^2x/{2+(sec^2x-1)}#,

#=sec^2x/(sec^2x+1)#,

#=sec^2x/(sec^2x+1)xxcos^2x/cos^2x#,

#=(sec^2xcos^2x)/(sec^2xcos^2x+cos^2x)#,

#=1/(1+cos^2x)#, as desired!