How do I find the value of sin (pi/12)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Konstantinos Michailidis Sep 15, 2015 #sin(pi/12)=sqrt2/4*(sqrt3-1)# Explanation: It is #sin(pi/12)=sin(pi/3-pi/4)=sin(pi/3)*cos(pi/4)-cos(pi/3)*sin(pi/4)=>sin(pi/12)=sqrt3/2*sqrt2/2-1/2*sqrt2/2=sqrt2/4*(sqrt3-1)# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 1336 views around the world You can reuse this answer Creative Commons License