How do I find the value of sec 11pi / 6? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Oct 18, 2015 Find sec ((11pi)/6) Ans: (2sqrt3)/3 Explanation: sec ((11pi)/6) = 1/cos ((11pi)/6). Find cos ((11pi)/6) On the trig unit circle, cos ((11pi)/6) = cos (-pi/6 + 2pi) = cos (-pi/6) = cos (pi/6) = sqrt3/2 Finally, sec ((11pi)/6) = 2/sqrt3 = (2sqrt3)/3 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 41417 views around the world You can reuse this answer Creative Commons License