csc (pi/12) = 1/sin (pi/12). Find sin (pi/12) call sin (pi/12) = sin t cos 2t = cos ((2pi)/12) = cos ((pi)/6) = sqrt3/2.
Use trig identity: cos 2t = sqrt3/2 = 1 - 2sin^2 t 2sin^2 t = 1 - sqrt3/2 --> sin^2 t = (2 - sqrt3)/4 sin (pi/12) = sin t = +- sqrt(2 - sqrt3)/2
Since sin (pi/12) is in Quadrant I, therefor, only the positive answer is accepted.