I believe you mean f(x) = sin(x) cdot cos(2 x)
We can differentiate this function using the chain rule and the product rule.
Let u = 2 x Rightarrow u' = 2 and v = cos(u) Rightarrow v' = - sin(u):
Rightarrow f'(x) = frac(d)(dx)(sin(x)) cdot (cos(2 x)) + frac(d)(dx)(cos(2 x)) cdot (sin(x))
Rightarrow f'(x) = cos(x) cdot cos(2 x) + u' cdot v' cdot sin(x)
Rightarrow f'(x) = cos(x) cos(2 x) + 2 cdot - sin(u) cdot sin(x)
Rightarrow f'(x) = cos(x) cos(2 x) - 2 sin(u) sin(x)
Let's replace u with 2 x:
Rightarrow f'(x) = cos(x) cos(2 x) - 2 sin(2 x) sin(x)
therefore f'(x) = cos(x) cos(2 x) - 2 sin(x) sin(2 x)