How can you use trigonometric functions to simplify 8 e^( ( 7 pi)/4 i ) into a non-exponential complex number?

1 Answer
Dec 28, 2015

8*e^((7pi)/4*i)=4pi-4pi*i

Explanation:

If we have a complex number in trigonometric form:

z=|z|*e^(i*varphi),

then according to de Moivre formula we can write, that:

|z|*e^(i*varphi)=|z|*(cosvarphi+i*sinvarphi)

If we assume that the module |z| is equal to 1, then the formula simplifies to:

e^(i*varphi)=(cosvarphi+i*sinvarphi)

So the expression 8*e^((7pi)/4*i) can be written as:

8*(cos((7pi)/4)+i*sin((7pi)/4))=

8*[cos(2pi-pi/4)+i*sin(2pi-pi/4)]=

8*[cos(pi/4)-i*sin(pi/4)]=8*[sqrt(2)/2-i*sqrt(2)/2]=

4sqrt(2)-4sqrt(2)*i