How can you use trigonometric functions to simplify 5e13π12i into a non-exponential complex number?

1 Answer
Aug 11, 2017

The answer is =54(6+2)+i54(26)

Explanation:

We apply Euler's relation

eiθ=cosθ+isinθ

5e1312iπ=5(cos(1312π)+isin(1312π))

cos(1312π)=cos(13π+34π)

=cos(13π)cos(34π)sin(13π)sin(34π)

=12223222

=6+24

sin(1312π)=sin(13π+34π)

=sin(13π)cos(34π)+cos(13π)sin(34π)

=3222+1222

=264

Therefore,

5e1312iπ=54(6+2)+i54(26)