How can you prove that d/dx(cothx) = -csch^2x using the definition cothx=coshx/sinhx?

1 Answer
Jul 11, 2018

Please see the proof below

Explanation:

We need

(coshx)'=sinhx

cothx=coshx/sinhx

cosh^2x-sinh^2x=1

Apply the quotient rule

(u/v)'=(u'v-uv')/(v^2)

u=coshx, =>, u'=sinhx

v=sinhx, =>, v'=coshx

Therefore,

(cothx)'=(sinh^2x-cosh^2x)/(sinh^2x)=-1/sinh^2x=csch^2x