How can (1+cosx)/(sinx) + (sinx)/(1+cosx)=2cscx1+cosxsinx+sinx1+cosx=2cscx?

1 Answer
May 4, 2017

We need

sin^2x+cos^2x=1sin2x+cos2x=1

(a+b)^2=a^2+2ab+b^2(a+b)2=a2+2ab+b2

cscx=1/sinxcscx=1sinx

Therefore,

LHS=sinx/(cosx+1)+(cosx+1)/sinxLHS=sinxcosx+1+cosx+1sinx

=(sin^2x+((cosx+1)(cosx+1)))/(sinx(cosx+1))=sin2x+((cosx+1)(cosx+1))sinx(cosx+1)

=(sin^2x+cos^2x+2cosx+1)/(sinx(cosx+1))=sin2x+cos2x+2cosx+1sinx(cosx+1)

=(2+2cosx)/(sinx(cosx+1))=2+2cosxsinx(cosx+1)

=2cancel(1+cosx)/(sinxcancel(cosx+1))

=2/sinx

=2cscx

=RHS

QED