We need
sin^2x+cos^2x=1sin2x+cos2x=1
(a+b)^2=a^2+2ab+b^2(a+b)2=a2+2ab+b2
cscx=1/sinxcscx=1sinx
Therefore,
LHS=sinx/(cosx+1)+(cosx+1)/sinxLHS=sinxcosx+1+cosx+1sinx
=(sin^2x+((cosx+1)(cosx+1)))/(sinx(cosx+1))=sin2x+((cosx+1)(cosx+1))sinx(cosx+1)
=(sin^2x+cos^2x+2cosx+1)/(sinx(cosx+1))=sin2x+cos2x+2cosx+1sinx(cosx+1)
=(2+2cosx)/(sinx(cosx+1))=2+2cosxsinx(cosx+1)
=2cancel(1+cosx)/(sinxcancel(cosx+1))
=2/sinx
=2cscx
=RHS
QED