Given vector A=2i + 1j and vector B=3j, how do you find the component of B in the direction of A?

1 Answer
Oct 6, 2017

The component is =<6/5,3/5> and its length is =3/sqrt5

Explanation:

The question is finding the projection of vecB onto vecA

The projection of vecB onto vecA is

proj_A B=(vecA.vecB)/(|vecA|^2)*vecA

vecA = <2,1>

vecB=<0,3>

Therefore,

proj_A B=(<2,1>. <0,3>)/(|<2,1>|^2)*<2,1>

=(3)/(5)*<2,1>

=<6/5,3/5>

So,

|proj_A B|=|<6/5,3/5>|= sqrt((6/5)^2+(3/5)^2)=sqrt(45/25)

=3/sqrt5