Given U is a vector with an initial point of (6,-4) and a terminal point of (-2, 8). How do you write u as a linear combination of the standard unit vector i and j?

2 Answers
Feb 4, 2017

vecU=-8veci+12vecj

Explanation:

"label "(6,-4)" point"A; "and "(-2,8)" point" B

so the position vectors for each point is as follows ( writing them as column vectors)

vec(OA)=((6),(-4))

vec(OB)=((-2),(8))

vecU" has initial point "A " and terminal point "B

"in vector notation "vecU=vec(AB)

so:

vecU=vec(AB)=vec(AO)+vec(OB

vecU=vec(AB)=-vec(OA)+vec(OB

vecU=vec(AB)=-((6),(-4))+((-2),(8))

vecU=vec(AB)=((-8),(12))

in veci"& "vecj "terms"

vecU=-8veci+12vecj

Feb 4, 2017

-8veci+12vecj

Explanation:

If vecu=xveci+yvecj, the conventional notation is

vecu = < x, y> , in Cartesian form, and

= r< costheta, sintheta>, in polar form.

Here, vecu=vec(AB), where the position vectors

vec(OA)=<6, -4> and vec(OB)=<-2, 8>, giving

vecu=vec(AB)=vec(OB)-vec(OA)

=<-2,8> - <6, -4> = <((-2-6), (8-(-4))> = <-8, 12>

=-8veci+12vecj