Given that u=x+yi. If z=(1-i)/(u+6) is a pure imaginary number,show that y=x+6. State the values of y if x=1.?

1 Answer
Nov 3, 2017

See the explanation below

Explanation:

u=x+iy

Then,

z=(1-i)/(u+6)=(1-i)/(x+iy+6)

Multiply numerator and denominator by the conjugate of the denominator

z=(1-i)/(x+iy+6)*(x+6-iy)/(x+6-iy)

=((x+6)-iy-i(x+6)+i^2y)/((x+6)^2-y^2i^2)

=(x+6-y)/((x+6)^2+y^2)+((-x-y-6)i)/((x+6)^2+y^2)

If z is pure imaginary number, then the real part is ℜ(z)=0

ℜ(z)=(x+6-y)/((x+6)^2+y^2)=0

The denominator is (x+6)^2+y^2>0, AA (x,y) in RR^2

Therefore,

x+6-y=0

=>, y=x+6

If x=1

(1+6)^2+y^2>0

y^2> -49

y=+-7i