Given f(x)=x+2, g(x)=x-3, h(x)=x+4f(x)=x+2,g(x)=x3,h(x)=x+4 how do you determine y=(f(x))/(h(x))times(g(x))/(h(x))y=f(x)h(x)×g(x)h(x)?

1 Answer
Jul 1, 2017

y = frac(x^(2) - x - 6)(x^(2) + 8 x + 16)y=x2x6x2+8x+16

Explanation:

We have: y = frac(f(x))(h(x)) times frac(g(x))(h(x))y=f(x)h(x)×g(x)h(x)

Rightarrow y = frac(f(x) times g(x))((h(x))^(2))y=f(x)×g(x)(h(x))2

Let's substitute the expressions for f(x)f(x), g(x)g(x) and h(x)h(x) into the equation:

Rightarrow y = frac((x + 2) times (x - 3))((x + 4)^(2))y=(x+2)×(x3)(x+4)2

Then, let's expand the parentheses:

Rightarrow y = frac(x^(2) + 2 x - 3 x - 6)(x^(2) + 4 x + 4 x + 16)y=x2+2x3x6x2+4x+4x+16

therefore y = frac(x^(2) - x - 6)(x^(2) + 8 x + 16)