Given f(x)=sqrtxf(x)=x and g(x)=x-1g(x)=x1, how do you determine the domain and range of y=f(g(x))y=f(g(x))?

1 Answer
Jun 20, 2017

Domain : x>=1x1. In interval notation [1,oo)[1,)
Range: y>=0 y0. In interval notation [0,oo)[0,)

Explanation:

f(x)=sqrtx ; g(x)=x-1 ; y=f(g(x))= ?f(x)=x;g(x)=x1;y=f(g(x))=?

Here Inside function is g(x)=x-1g(x)=x1. Domain of inside function is any real number x in RR , Range: g(x) in RR

y=f(g(x)) = f(x-1) = sqrt(x-1) . Domain: under root should be >=0 :. x-1>=0 or x>=1.

Domain :x>=1.In interval notation [1,oo)

Range: y>=0 In interval notation [0,oo)
graph{sqrt(x-1) [-10, 10, -5, 5]} [Ans]