Given #csctheta^circ=sqrt3/2# and #sectheta^circ=sqrt3/3#, how do you find #tantheta#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Narad T. Jan 10, 2017 The answer is #=2/3# Explanation: By definition, #csctheta=1/sintheta# #sectheta=1/costheta# #tantheta=sintheta/costheta# #=sectheta/csctheta# #=(sqrt3/3)/(sqrt3/2)# #=cancel(sqrt3)/3*2/cancel(sqrt3)# #=2/3# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 937 views around the world You can reuse this answer Creative Commons License