Given a monic cubic function #x^3+bx^2+cx+d# with zeros #alpha, beta, gamma# how can you construct a set of #6xx6# rational matrices that form a field isomorphic to #QQ[alpha, beta, gamma]# ?
Assume that #QQ[alpha] != QQ[alpha, beta, gamma]# , #QQ[beta] != QQ[alpha, beta, gamma]# and #QQ[gamma] != QQ[alpha, beta, gamma]# , i.e. the field generated by all three zeros is larger than the fields generated by any one of them individually.
Assume that
1 Answer
See explanation...
Explanation:
Given the conditions of the question,
#x^3+bx^2+cx+d#
is the minimum polynomial of
Also, note that the minimum polynomial of
#(x^3+bx^2+cx+d)/(x-alpha) = x^2+(b+alpha)x+(c+alphab+alpha^2)#
The companion matrix of
#M = ((0, 0, -d), (1, 0, -c), (0, 1, -b))#
Then:
#M^2 = ((0, -d, b d), (0, -c, b c - d), (1, -b, b^2 - c))#
While the companion matrix of
#((0, -c-alphab-alpha^2), (1, -b-alpha))#
We find:
#-cI-bM-M^2#
#= ((-c, 0, 0),(0, -c, 0),(0, 0, -c))+((0, 0, bd), (-b, 0, bc), (0, -b, b^2))- ((0, -d, b d), (0, -c, b c - d), (1, -b, b^2 - c))#
#= ((-c, d, 0), (-b, 0, d), (-1, 0, 0))#
#-bI-M#
#=((-b,0,0),(0,-b,0),(0,0,-b))-((0, 0, -d), (1, 0, -c), (0, 1, -b))#
#=((-b, 0, d), (-1, -b, c), (0, -1, 0))#
Hence we can represent
#M_alpha = ((alpha, 0), (0, alpha)) = ((0, 0, -d, 0, 0, 0), (1, 0, -c, 0, 0, 0), (0, 1, -b, 0, 0, 0), (0, 0, 0, 0, 0, -d), (0, 0, 0, 1, 0, -c), (0, 0, 0, 0, 1, -b))#
and
#M_beta = ((0, -c-balpha-alpha^2), (1, -b-alpha)) = ((0, 0, 0, -c, -d, 0), (0, 0, 0, -b, 0, -d), (0, 0, 0, -1, 0, 0), (1, 0, 0, -b, 0, d), (0, 1, 0, -1, -b, c), (0, 0, 1, 0, -1, 0))#
The field generated by these two matrices is isomorphic to