Given A = i(x+2y) - j(y+3z) +k (3x-y), how do you determine a unit vector parallel to A at point P(1,-1,2)?

1 Answer
Jul 15, 2017

The unit vector is =<-1/sqrt42,-5/sqrt42,4/sqrt42>

Explanation:

The vector is

vec(A)(x,y,z)=veci(x+2y)+vecj(-y-3z)+veck(3x-y)

At the point , P=(1,-1,2)

vecA(1,-1,2)=veci(-1)+vecj(-5)+veck(4)

The unit vector in the direction of vecA(1,-1,2) is

(vecA(1,-1,2))/(||vecA(1,-1,2)||)

The modulus of vec(A(1,-1,2)) is

||vecA(1,-1,2)||=| |veci(-1)+vecj(-5)+veck(4)||

=sqrt(1+25+16)

=sqrt42

The unit vector is =<-1/sqrt42,-5/sqrt42,4/sqrt42>