From the Heisenberg uncertainty principle, how do you calculate Δx for an electron with Δv = 0.300 m/s?

1 Answer
May 19, 2016

A formulation of the Heisenberg Uncertainty Principle is (Physical Chemistry: A Molecular Approach, McQuarrie):

\mathbf(DeltavecxDeltavecp_x >= h)

where:

  • Deltavecx is the uncertainty in the position.
  • Deltavecp_x is the uncertainty in the momentum.
  • h = 6.626xx10^(-34) "J"cdot"s" is Planck's constant.

Recall from physics that momentum is defined as vecp = mvecv, where m is mass and vecv is velocity.

Since vecp = mvecv, Deltavecp_x = m_eDeltavecv_x, assuming the mass m_e of an electron is constant.

Solving for Deltavecx, we would start by ignoring the greater-than sign, because if we get a value that satisfies the equal sign, we establish the bare minimum requirement to satisfy this principle.

color(blue)(Deltavecx) = h/(Deltavecp_x)

= color(blue)(h/(m_eDeltavecv_x))

= (6.626xx10^(-34) "J"cdot"s")/((9.109xx10^(-31) "kg")("0.300 m/s"))

= (6.626xx10^(-34) "kg"cdot"m"^2"/s"^cancel(2)cdotcancel("s"))/((9.109xx10^(-31) "kg")("0.300 m/s"))

= (6.626xx10^(-34) cancel("kg")cdot"m"^cancel(2)"/"cancel("s"))/((9.109xx10^(-31) cancel("kg"))("0.300" cancel("m/s")))

= color(blue)("0.00242 m"


And indeed, the Heisenberg Uncertainty Principle is satisfied:

DeltavecxDeltavecp_x stackrel(?)(>=) h

= stackrel(Deltavecx)overbrace(("0.00242 m"))stackrel(Deltavecp_x)overbrace([(9.109*10^(-31) "kg")("0.300 m/s")])

= 6.61 xx 10^(-34) "J"cdot"s" > h color(green)(sqrt"")