From the Heisenberg uncertainty principle, how do you calculate Δx for an electron with Δv = 0.300 m/s?
1 Answer
A formulation of the Heisenberg Uncertainty Principle is (Physical Chemistry: A Molecular Approach, McQuarrie):
\mathbf(DeltavecxDeltavecp_x >= h) where:
Deltavecx is the uncertainty in the position.Deltavecp_x is the uncertainty in the momentum.h = 6.626xx10^(-34) "J"cdot"s" is Planck's constant.
Recall from physics that momentum is defined as
Since
Solving for
color(blue)(Deltavecx) = h/(Deltavecp_x)
= color(blue)(h/(m_eDeltavecv_x))
= (6.626xx10^(-34) "J"cdot"s")/((9.109xx10^(-31) "kg")("0.300 m/s"))
= (6.626xx10^(-34) "kg"cdot"m"^2"/s"^cancel(2)cdotcancel("s"))/((9.109xx10^(-31) "kg")("0.300 m/s"))
= (6.626xx10^(-34) cancel("kg")cdot"m"^cancel(2)"/"cancel("s"))/((9.109xx10^(-31) cancel("kg"))("0.300" cancel("m/s")))
= color(blue)("0.00242 m"
And indeed, the Heisenberg Uncertainty Principle is satisfied:
DeltavecxDeltavecp_x stackrel(?)(>=) h
= stackrel(Deltavecx)overbrace(("0.00242 m"))stackrel(Deltavecp_x)overbrace([(9.109*10^(-31) "kg")("0.300 m/s")])
= 6.61 xx 10^(-34) "J"cdot"s" > h color(green)(sqrt"")