For x,y, and z positive real numbers, what is the maximum possible value for \sqrt{\frac{3x+4y}{6x+5y+4z}} + \sqrt{\frac{y+2z}{6x+5y+4z}} + \sqrt{\frac{2z+3x}{6x+5y+4z}}?

1 Answer
May 21, 2017

sqrt(3)

Explanation:

Calling

{(u=3x+4y),(v=y+2z),(w=3x+2z):}

we have

\sqrt{\frac{3x+4y}{6x+5y+4z}} + \sqrt{\frac{y+2z}{6x+5y+4z}} + \sqrt{\frac{2z+3x}{6x+5y+4z}} = sqrt(u/(u+v+w))+sqrt(v/(u+v+w))+sqrt(w/(u+v+w))

and also

sqrt(u/(u+v+w))+sqrt(v/(u+v+w))+sqrt(w/(u+v+w)) le 3/sqrt(3)=sqrt(3)

because if

s_n = sum_(k=1)^n sqrt(u_k)

such that u_k > 0 for k=1,2,cdots,n and
sum_(k=1)^n u_k = 1

then

s_n le n/sqrt(n)=sqrt(n)