"substitute "y=mx+4" into the equation of the circle"
rArrx^2+(mx+4)^2=4larr" expand and simplify"
rArrx^2+m^2x^2+8mx+16-4=0
rArr(1+m^2)x^2+8mx+12=0
"with "a=1+m^2,b=8m,c=12
"utilise the coditions for the "color(blue)"discriminant"
Delta=b^2-4ac
• " if "Delta>0" then 2 real solutions"to(b)" above"
• " if "Delta=0" then 1 real solution "to(a)" above"
• " if "Delta<0" then no real solutions "to(c)" above"
Delta=b^2-4ac=64m^2-48(1+m^2)
color(white)(xxxxxxxx)=16m^2-48
(a)
"solve "16m^2-48=0
rArr16(m^2-3)=0
rArrm^2-3=0rArrm^2=3rArrm=+-sqrt3
"there are 2 possible tangents to the circle"
y=-sqrt3x+4" or "y=sqrt3x+4
(b)" and "(c)
"we require to solve "
m^2-3>0" and "m^2-3<0
"graphing "m^2-3" will provide both solutions"
"zeros are "m=+-sqrt3
"coefficient of "m^2>0rArruuu
graph{x^2-3 [-10, 10, -5, 5]}
"solutions to "m^2-3>0" lie above the m(x)-axis"
rArrm<-sqrt3" or "m>sqrt3
"in interval notation "(-oo,-sqrt3)uu(sqrt3,+oo)
"solutions to "m^2-3<0" lie below the m(x)-axis"
rArr-sqrt3< m < sqrt3" or "(-sqrt3,sqrt3)