Finding the coefficient of x in an expansion?

I need an example to show me how to implement the methods of finding the coefficient of x in an expansion. The example question I'm using is the following.
Finding the coefficient of x^2x2 in the expansion (1 + x^2)(x/2-4/x)^6(1+x2)(x24x)6

1 Answer
Jul 25, 2017

-145145

Explanation:

"expand "(x/2-4/x)^6" using the "color(blue)"binomial theorem"expand (x24x)6 using the binomial theorem

rArr(x/2-4/x)^6(x24x)6

=(x/2)^6+6.(x/2)^5(-4/x)+15.(x/2)^4(-4/x)^2+20(x/2)^3(-4/x)^3+15.(x/2)^2(-4/x)^4+6.(x/2)(-4/x)^5+(-4/x)^6=(x2)6+6.(x2)5(4x)+15.(x2)4(4x)2+20(x2)3(4x)3+15.(x2)2(4x)4+6.(x2)(4x)5+(4x)6

=1/64x^6-3/4x^4+15x^2-160+960x^-2-3072x^-4+4096x^-6=164x634x4+15x2160+960x23072x4+4096x6

color(blue)"--------------------------------------------------------------"--------------------------------------------------------------

rArr(1+x^2)(1/64x^6-3/4x^4+15x^2-160+.......)

"we only require the terms in "x^2

"multiplying expansion by 1 "to15x^2

"multiplying expansion by "x^2to-160x^2

"the term in "x^2=15x^2-160x^2=-145x^2

rArr"the coefficient of the term in "x^2=-145