Finding all real solutions in a system of equations?
The system of equations is:
#x^3-3xy^2=1 and #
#3x^2y-y^3=1#
The system of equations is:
1 Answer
Explanation:
Given:
#{ (x^3-3xy^2=1), (3x^2y-y^3=1) :}#
Adding
#1+i = x^3+3ix^2y-3xy^2-iy^3#
#color(white)(1+i) = x^3+3x^2(iy)+3x(iy)^2+(iy)^3#
#color(white)(1+i) = (x+iy)^3#
Now:
#1+i = sqrt(2)(cos (pi/4)+i sin (pi/4))#
So:
#x+iy = root(6)(2)(cos (pi/12+(2npi)/3) + i sin (pi/12+(2npi)/3))# for
#n = 0, 1, 2#
Equating real and imaginary parts gives us real solutions to the original system:
#(x, y) = (root(6)(2)cos(pi/12), root(6)(2)sin(pi/12)) = (1/4root(6)(2)(sqrt(6)+sqrt(2)), 1/4root(6)(2)(sqrt(6)-sqrt(2)))#
#(x, y) = (root(6)(2)cos((3pi)/4), root(6)(2)sin((3pi)/4)) = (-root(3)(4)/2, root(3)(4)/2)#
#(x, y) = (root(6)(2)cos((17pi)/12), root(6)(2)sin((17pi)/12)) = (-1/4root(6)(2)(sqrt(6)-sqrt(2)), -1/4root(6)(2)(sqrt(6)+sqrt(2)))#