Find the square roots of the complex number. (Enter your answers as a comma-separated list. Round terms to four decimal places.) ?
5+5i
5+5i
1 Answer
#~~+-(2.4567+1.0176i)#
Explanation:
General method
Here's a non-trigonometric method for finding square roots of complex numbers...
Suppose we are given any complex number
We want to solve:
#a+bi = (x+yi)^2#
#color(white)(a+bi) = (x^2-y^2)+2xyi#
Equating real and imaginary parts, we have:
#{ (x^2-y^2=a), (2xy=b) :}#
From the second equation, we find:
#y = b/(2x)#
Substituting
#a = x^2-(b/(2x))^2 = x^2-b^2/(4x^2)#
Multiply through by
#4ax^2 = 4(x^2)^2-b^2#
Subtract
#0 = 4(x^2)^2-4a(x^2)-b^2#
#color(white)(0) = (2x^2)^2-2(2x^2)a+a^2-(a^2+b^2)#
#color(white)(0) = (2x^2-a)^2-(sqrt(a^2+b^2))^2#
#color(white)(0) = (2x^2-a-sqrt(a^2+b^2))(2x^2-a+sqrt(a^2+b^2))#
Hence:
#2x^2 = a+-sqrt(a^2+b^2)#
So:
#x^2 = (a+-sqrt(a^2+b^2))/2#
In order for
#x = +-sqrt((sqrt(a^2+b^2)+a)/2)#
Then:
#y = +-sqrt(x^2-a) = +-sqrt((sqrt(a^2+b^2)-a)/2)#
Since
So if
#+-((sqrt((sqrt(a^2+b^2)+a)/2))+b/abs(b)(sqrt((sqrt(a^2+b^2)-a)/2))i)#
Example
To find the square roots of
Then:
#sqrt(a^2+b^2) = sqrt(5^2+5^2) = 5sqrt(2)#
#b/abs(b) = 5/5 = 1#
So the square roots are:
#+-((sqrt((sqrt(a^2+b^2)+a)/2))+b/abs(b)(sqrt((sqrt(a^2+b^2)-a)/2))i)#
#=+-((sqrt((5sqrt(2)+5)/2))+(sqrt((5sqrt(2)-5)/2))i)#
#~~+-(2.45673236+1.017611864i)#
#~~+-(2.4567+1.0176i)#