Find the number of solutions of equation: (1-tan θ)(1+tan θ) sec²θ+2^(tan²θ)=0 when θ∈(-π/2,π/2)?

1 Answer
Jul 15, 2018

theta = kpi + arctan ( +-sqrt(sqrt 2 + 1))θ=kπ+arctan(±2+1),
k = 0, +-1, +-2, +-3, ..= kpi +- 57.235^o, pi = 180^ok=0,±1,±2,±3,..=kπ±57.235o,π=180o
..

Explanation:

Use sec^2theta= 1 + tan^2thetasec2θ=1+tan2θ and x = tan theta.x=tanθ.

The equation becomes the cubic x^4 - 2 x^2 - 1 = 0x42x21=0

Solving this quadratic in x^2 >= 0x20,

x^2 = sqrt 2 + 1 rArr tan theta = x = +- sqrt(sqrt 2 + 1)x2=2+1tanθ=x=±2+1

= +-1.5538=±1.5538 # ( see graph ), giving

theta = kpi + arctan ( +-sqrt(sqrt 2+- 1))θ=kπ+arctan(±2±1), k = 0, +-1, +-2, +-3, ...#

= kpi +- 57.235^o, pi = 180^o=kπ±57.235o,π=180o
graph{y - x^4 + 2 x^2 +1 = 0[-2 2 -0.01 0.01]}

Sometimes, oversight miss produces good results !

What follows is the solution for mistaken equation

(1 + tan theta ) sec^2theta + 2 tan^2theta = 0(1+tanθ)sec2θ+2tan2θ=0,

rArr x^3 +3x^2 + x + 1 = 0x3+3x2+x+1=0

Graph locates only one real root x = - 2.75, nearly.

Astute scaling nearby, approximates x to 5-sd -2.76932.7693.
theta = tan^(-1)x = tan(-1) (- 2.7693 )θ=tan1x=tan(1)(2.7693)

=- 70.145^o = -1.2243 rad > - pi/2 = -1.57079... rad.

graph{y-x^3-3x^2-x-1=0}
graph{y-x^3-3x^2-x-1=0[-2.7695 -2.769 -.01 .01]}