Find the exact value of sin(pi/12) , cos (11pi/12) , and tan (7pi/12)?

1 Answer
Aug 19, 2015

sin (pi/12)=((sqrt(3)-1)/(2sqrt(2)))sin(π12)=(3122)
cos((11pi)/12)=-((1+sqrt(3))/(2sqrt(2)))cos(11π12)=(1+322)
tan ((7pi)/12)=-2-sqrt(3)tan(7π12)=23

Explanation:

sin (pi/12)sin(π12)
=sin(pi/3 - pi/4)=sin(π3π4)
=sin(pi/3)cos(pi/4)-cos(pi/3)sin(pi/4)=sin(π3)cos(π4)cos(π3)sin(π4)
=(sqrt(3)/2)(1/sqrt(2))-(1/2)(1/sqrt(2))=(32)(12)(12)(12)
=((sqrt(3)-1)/(2sqrt(2)))=(3122)

cos((11pi)/12)cos(11π12)
=cos((2pi)/3+pi/4)=cos(2π3+π4)
=cos((2pi)/3)cos(pi/4)-sin((2pi)/3)sin(pi/4)=cos(2π3)cos(π4)sin(2π3)sin(π4)
=cos(pi-pi/3)cos(pi/4)-sin(pi-pi/3)sin(pi/4)=cos(ππ3)cos(π4)sin(ππ3)sin(π4)
=-cos(pi/3)cos(pi/4)-sin(pi/3)sin(pi/4)=cos(π3)cos(π4)sin(π3)sin(π4)
=-(1/2)(1/sqrt(2))-(sqrt(3)/2)(1/sqrt(2))=(12)(12)(32)(12)
=-((1+sqrt(3))/(2sqrt(2)))=(1+322)

tan ((7pi)/12)tan(7π12)
=tan(pi/3 + pi/4)=tan(π3+π4)
=(sqrt(3) + 1)/(1 - sqrt(3))=3+113
=((sqrt(3) + 1)(1+sqrt(3)))/(1 - 3)=(3+1)(1+3)13
=-2-sqrt(3)=23