Find the cubic equation whose roots are the cubes of the roots of x^3+ax^2+bx+c=0,a,b,cinRR?

Find the cubic equation whose roots are the cubes of the roots of
x^3+ax^2+bx+c=0,a,b,cinRR

1 Answer
Mar 13, 2017

x^3+(a^3-3ab+3c)x^2+(b^3-3abc+3c^2)x+c^3=0

Explanation:

Suppose the roots of the original cubic are alpha, beta and gamma.

Then:

x^3+ax^2+bx+c = (x-alpha)(x-beta)(x-gamma)

color(white)(x^3+ax^2+bx+c) = x^3-(alpha+beta+gamma)x^2+(alphabeta+betagamma+gammaalpha)x-alphabetagamma

So we have:

{ (alpha+beta+gamma = -a), (alphabeta+betagamma+gammaalpha = b), (alphabetagamma = -c) :}

The cubic we are looking for is:

(x-alpha^3)(x-beta^3)(x-gamma^3)

= x^3-(alpha^3+beta^3+gamma^3)x^2+(alpha^3beta^3+beta^3gamma^3+gamma^3alpha^3)x-alpha^3beta^3gamma^3

So the problem essentially boils down to expressing each of the symmetric polynomials in alpha^3, beta^3 and gamma^3 constituting these coefficients in terms of the elementary symmetric polynomials in alpha, beta and gamma.

For example:

(alpha+beta+gamma)^3

=alpha^3+beta^3+gamma^3+3(alpha^2beta+beta^2gamma+gamma^2alpha+alphabeta^2+betagamma^2+gammaalpha^2)+6alphabetagamma

(alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)

=alpha^2beta+beta^2gamma+gamma^2alpha+alphabeta^2+betagamma^2+gammaalpha^2+3alphabetagamma

So:

alpha^3+beta^3+gamma^3

=(alpha+beta+gamma)^3-3(alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)+3alphabetagamma

=-a^3+3ab-3c

We also find:

(alphabeta+betagamma+gammaalpha)^3

= alpha^3beta^3+beta^3gamma^3+gamma^3alpha^3+3(alpha^3beta^2gamma+beta^3gamma^2alpha+gamma^3alpha^2beta+alpha^3betagamma^2+beta^3gammaalpha^2+gamma^3alphabeta^2)+6alpha^2beta^2gamma^2

(alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)alphabetagamma

=alpha^3beta^2gamma+beta^3gamma^2alpha+gamma^3alpha^2beta+alpha^3betagamma^2+beta^3gammaalpha^2+gamma^3alphabeta^2+3alpha^2beta^2gamma^2

So:

alpha^3beta^3+beta^3gamma^3+gamma^3alpha^3

=(alphabeta+betagamma+gammaalpha)^3-3(alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)alphabetagamma+3(alphabetagamma)^2

=b^3-3abc+3c^2

Finally:

alpha^3beta^3gamma^3 = (alphabetagamma)^3 = -c^3

Hence the required cubic equation is:

x^3+(a^3-3ab+3c)x^2+(b^3-3abc+3c^2)x+c^3 = 0

color(white)()
Footnote

If you would like to see a more advanced application of symmetric polynomials, you may like to take a look at this one: https://socratic.org/s/aCWXbG2b