Find the Cartesian equation of the locus of arg((z-4)/(z+4))=pi/4arg(z4z+4)=π4?

Thanks!

2 Answers
Nov 29, 2017

This equation is circle with centre (-4, 0)(4,0) and its radius r=4sqrt2r=42

Explanation:

Set z=x+yiz=x+yi, so arg((z-4)/(z+4))=pi/4arg(z4z+4)=π4

arctan((z-4)/(z+4))=pi/4arctan(z4z+4)=π4

arctan((x+yi-4)/(x+yi+4))=pi/4arctan(x+yi4x+yi+4)=π4

arctan((y-4)/x)-arctan((y+4)/x)=pi/4arctan(y4x)arctan(y+4x)=π4

After taking tangent both sides,

[(y-4)/x-(y+4)/x]/[1+(y-4)/x*(y+4)/x]=tan(pi/4)y4xy+4x1+y4xy+4x=tan(π4)

(-8/x)/[(x^2+y^2-16)/x^2]=18xx2+y216x2=1

-8/x=(x^2+y^2-16)/x^28x=x2+y216x2

x^2+y^2-16=-8xx2+y216=8x

x^2+8x+y^2-16=0x2+8x+y216=0

x^2+8x+16+y^2=32x2+8x+16+y2=32

(x+4)^2+y^2=32(x+4)2+y2=32

This equation describes a circle with its centre M (-4,0)M(4,0) and its radius r=4sqrt2r=42.

Nov 29, 2017

x^2+(y-4)^2 = 32x2+(y4)2=32

Explanation:

We know that

z-4 = r_1 e^(i phi_1)z4=r1eiϕ1 with phi_1 = arctan(y/(x-4))ϕ1=arctan(yx4)
z+4 = r_2 e^(i phi_2)z+4=r2eiϕ2 with phi_2 = arctan(y/(x+4))ϕ2=arctan(yx+4)

then

"arg"((z-4)/(z+4)) = "arg"(r_1/r_2e^(i(phi_1-phi_2))) = phi_1-phi_2 = pi/4arg(z4z+4)=arg(r1r2ei(ϕ1ϕ2))=ϕ1ϕ2=π4 or

arctan(y/(x-4))-arctan(y/(x+4))=pi/4arctan(yx4)arctan(yx+4)=π4

now

tan(arctan(y/(x-4))-arctan(y/(x+4))) = tan(pi/4) = 1tan(arctan(yx4)arctan(yx+4))=tan(π4)=1 or

(8 y)/(x^2 + y^2-16) = 18yx2+y216=1 or

x^2+y^2-8y-16=0x2+y28y16=0 or

x^2+(y-4)^2 = 32x2+(y4)2=32

NOTE

From tan(phi_1-phi_2) = (tanphi_1-tanphi_2)/(1+tanphi_1 tanphi_2)tan(ϕ1ϕ2)=tanϕ1tanϕ21+tanϕ1tanϕ2

making

phi_1 = arctan(y/(x-4))ϕ1=arctan(yx4) and phi_2 = arctan(y/(x+4))ϕ2=arctan(yx+4)

and knowing that tan(arctan xi))= xitan(arctanξ))=ξ we have

((y/(x-4))-(y/(x+4)))/(1+(y/(x-4))(y/(x+4))) = (8 y)/(x^2 + y^2-16)(yx4)(yx+4)1+(yx4)(yx+4)=8yx2+y216