Find sinthetasinθ, costhetacosθ, and tanthetatanθ under the given conditions: sin2theta=1/5, pi/2 <= 2theta < pisin2θ=15,π22θ<π?

I know the answers are:
sintheta=sqrt(1/2+sqrt6/5)sinθ=12+65
costheta = sqrt(1/2 - sqrt6/5)cosθ=1265
tantheta = sqrt((5+2sqrt6)/(5-2sqrt6)tanθ=5+26526

Thanks in advance.

1 Answer
Apr 7, 2018

See below.

Explanation:

pi/2<=2theta<=pi -> pi/4<=theta<=pi/2π22θππ4θπ2

Thus, all double-angle cosines must be negative due to the double angle being in the second quadrant, and all single-angle sines, cosines, and tangents must be positive due to the single angle being in a portion of the first quadrant.

Keeping that in mind, recall that

sin^2theta+cos^2theta=1sin2θ+cos2θ=1

We may optimize this to

sin^2(2theta)+cos^2(2theta)=1sin2(2θ)+cos2(2θ)=1

sin^2(2theta)=(1/5)^2=1/25sin2(2θ)=(15)2=125

cos^2(2theta)=25/25-1/25cos2(2θ)=2525125

cos(2theta)=+-sqrt(24)/5cos(2θ)=±245

We want the negative solution.

cos(2theta)=-2sqrt(6)/5cos(2θ)=265

Now, we want to relate these double angles to single angle trig functions.

The power-reduction identities are the way to go.

Recall

cos^2theta=1/2(1+cos2theta)cos2θ=12(1+cos2θ)

Thus,

cos^2theta=1/2(1-2sqrt6/5)=1/2-sqrt6/5cos2θ=12(1265)=1265

costheta=+-sqrt(1/2-sqrt6/5)cosθ=±1265

We want the positive answer.

costheta=sqrt(1/2-sqrt6/5)cosθ=1265

Furthermore, recall

sin^2theta=1/2(1-cos2theta)sin2θ=12(1cos2θ)

Then,

sin^2theta=1/2(1-(-2sqrt6/5))sin2θ=12(1(265))

sin^2theta=1/2+sqrt6/5sin2θ=12+65

sintheta=+-sqrt(1/2+sqrt6/5)sinθ=±12+65

We want the positive answer.

sintheta=sqrt(1/2+sqrt6/5)sinθ=12+65

tantheta=sintheta/costheta,tanθ=sinθcosθ, so

tantheta=sqrt(1/2+sqrt6/5)/sqrt(1/2-sqrt6/5)=sqrt((1/2+sqrt6/5)/(1/2-sqrt6/5))=sqrt(((5+2sqrt6)/cancel(10))/((5-2sqrt6)/cancel(10)))=sqrt((5+2sqrt6)/(5-2sqrt6)