Find sin72 if you know the sines of 30 45 60?

1 Answer
Jul 20, 2018

The answer is =sqrt(10+2sqrt5)/4=10+254

Explanation:

We need

sin(2x)=2sinxcosxsin(2x)=2sinxcosx

cos(2x)=1-2sin^2xcos(2x)=12sin2x

sinx=cos(90-x)sinx=cos(90x)

sin^2x+cos^2x=1sin2x+cos2x=1

Let's start

sin(72)=sin(2*36)sin(72)=sin(236)

=2sin36cos36=2sin36cos36

=2sin(2*18)cos(2*18)=2sin(218)cos(218)

=2sin(2sin18cos18)(1-2sin^2 18)=2sin(2sin18cos18)(12sin218)

=4sin18cos18(1-2sin^2 18)=4sin18cos18(12sin218)

Therefore,

sin72=cos(90-72)=4sin18cos18(1-2sin^2 18)sin72=cos(9072)=4sin18cos18(12sin218)

cos18=4sin18cos18(1-2sin^2 18)cos18=4sin18cos18(12sin218)

Divide both sides by cos18cos18

1=4sin18(1-2sin^2 18)1=4sin18(12sin218)

8sin^3 18-4sin18+1=08sin3184sin18+1=0

Factorise

(2sin18-1)(4sin^2 18+ 2sin18-1)=0(2sin181)(4sin218+2sin181)=0

Therefore,

sin18=1/2sin18=12 which is O/

The solution to the quadratic equation is

sin18=(-2+-sqrt(2^2-4*4*(-1)))/(2*4)sin18=2±2244(1)24

=(-2+-sqrt20)/8=2±208

=(-2+-2sqrt5)/8=2±258

=(-1+-sqrt5)/4=1±54

Discard sin18=(-1-sqrt5)/4sin18=154 as this is <0<0

We keep only sin18=(-1+sqrt5)/4sin18=1+54

So,

cos72=(-1+sqrt5)/4cos72=1+54

sin72=sqrt(1-cos^2 72)sin72=1cos272

=sqrt(1-((-1+sqrt5)/4)^2)= 1(1+54)2

=sqrt((16-(1+5-2sqrt5)))/4=(16(1+525))4

=sqrt(10+2sqrt5)/4=10+254