We need
sin(2x)=2sinxcosxsin(2x)=2sinxcosx
cos(2x)=1-2sin^2xcos(2x)=1−2sin2x
sinx=cos(90-x)sinx=cos(90−x)
sin^2x+cos^2x=1sin2x+cos2x=1
Let's start
sin(72)=sin(2*36)sin(72)=sin(2⋅36)
=2sin36cos36=2sin36cos36
=2sin(2*18)cos(2*18)=2sin(2⋅18)cos(2⋅18)
=2sin(2sin18cos18)(1-2sin^2 18)=2sin(2sin18cos18)(1−2sin218)
=4sin18cos18(1-2sin^2 18)=4sin18cos18(1−2sin218)
Therefore,
sin72=cos(90-72)=4sin18cos18(1-2sin^2 18)sin72=cos(90−72)=4sin18cos18(1−2sin218)
cos18=4sin18cos18(1-2sin^2 18)cos18=4sin18cos18(1−2sin218)
Divide both sides by cos18cos18
1=4sin18(1-2sin^2 18)1=4sin18(1−2sin218)
8sin^3 18-4sin18+1=08sin318−4sin18+1=0
Factorise
(2sin18-1)(4sin^2 18+ 2sin18-1)=0(2sin18−1)(4sin218+2sin18−1)=0
Therefore,
sin18=1/2sin18=12 which is O/∅
The solution to the quadratic equation is
sin18=(-2+-sqrt(2^2-4*4*(-1)))/(2*4)sin18=−2±√22−4⋅4⋅(−1)2⋅4
=(-2+-sqrt20)/8=−2±√208
=(-2+-2sqrt5)/8=−2±2√58
=(-1+-sqrt5)/4=−1±√54
Discard sin18=(-1-sqrt5)/4sin18=−1−√54 as this is <0<0
We keep only sin18=(-1+sqrt5)/4sin18=−1+√54
So,
cos72=(-1+sqrt5)/4cos72=−1+√54
sin72=sqrt(1-cos^2 72)sin72=√1−cos272
=sqrt(1-((-1+sqrt5)/4)^2)=
⎷1−(−1+√54)2
=sqrt((16-(1+5-2sqrt5)))/4=√(16−(1+5−2√5))4
=sqrt(10+2sqrt5)/4=√10+2√54