Find N? Please add work and explanation!

Let N = \sum_{k = 1}^{1000}k(\lceil \log_{\sqrt {2}}k\rceil - \lfloor \log_{\sqrt {2}}k \rfloor). N=1000k=1k(log2klog2k).
Find N

1 Answer
May 12, 2017

sum_(k=1)^1000 k(ceil(log_(sqrt(2)) k) - floor(log_(sqrt(2)) k))=4994771000k=1k(log2klog2k)=499477

Explanation:

When is log_(sqrt(2)) klog2k an integer?

If kk is a power of 22, e.g. k = 2^mk=2m then we find:

log_(sqrt(2)) k = log_(sqrt(2)) 2^m = 2mlog2k=log22m=2m

Conversely, if log_(sqrt(2)) klog2k is an integer, e.g. nn, then we find:

k = sqrt(2)^n = 2^(n/2)k=2n=2n2

If nn is odd then this is irrational and not an integer.

Note that when log_(sqrt(2)) klog2k is an integer, then:

ceil(log_(sqrt(2)) k) - floor(log_(sqrt(2)) k) = 0log2klog2k=0

When log_(sqrt(2)) klog2k is not an integer, then:

ceil(log_(sqrt(2)) k) - floor(log_(sqrt(2)) k) = 1log2klog2k=1

So we find:

sum_(k=1)^1000 k(ceil(log_(sqrt(2)) k) - floor(log_(sqrt(2)) k))1000k=1k(log2klog2k)

=sum_(k=1)^1000 k - sum_(m=0)^9 2^m=1000k=1k9m=02m

=1/2*1000*(1000+1) - (2^10-1)=121000(1000+1)(2101)

=500500-1023=5005001023

=499477=499477