Find N? Please add work and explanation!
Let N = \sum_{k = 1}^{1000}k(\lceil \log_{\sqrt {2}}k\rceil - \lfloor \log_{\sqrt {2}}k \rfloor). N=1000∑k=1k(⌈log√2k⌉−⌊log√2k⌋).
Find N
Let N = \sum_{k = 1}^{1000}k(\lceil \log_{\sqrt {2}}k\rceil - \lfloor \log_{\sqrt {2}}k \rfloor). N=1000∑k=1k(⌈log√2k⌉−⌊log√2k⌋).
Find N
1 Answer
sum_(k=1)^1000 k(ceil(log_(sqrt(2)) k) - floor(log_(sqrt(2)) k))=4994771000∑k=1k(⌈log√2k⌉−⌊log√2k⌋)=499477
Explanation:
When is
If
log_(sqrt(2)) k = log_(sqrt(2)) 2^m = 2mlog√2k=log√22m=2m
Conversely, if
k = sqrt(2)^n = 2^(n/2)k=√2n=2n2
If
Note that when
ceil(log_(sqrt(2)) k) - floor(log_(sqrt(2)) k) = 0⌈log√2k⌉−⌊log√2k⌋=0
When
ceil(log_(sqrt(2)) k) - floor(log_(sqrt(2)) k) = 1⌈log√2k⌉−⌊log√2k⌋=1
So we find:
sum_(k=1)^1000 k(ceil(log_(sqrt(2)) k) - floor(log_(sqrt(2)) k))1000∑k=1k(⌈log√2k⌉−⌊log√2k⌋)
=sum_(k=1)^1000 k - sum_(m=0)^9 2^m=1000∑k=1k−9∑m=02m
=1/2*1000*(1000+1) - (2^10-1)=12⋅1000⋅(1000+1)−(210−1)
=500500-1023=500500−1023
=499477=499477