Starting from the equation
xy^2-sin(x+2y)=2xxy2−sin(x+2y)=2x
We differentiate both sides of the equation, using d/dxddx
d/dx(xy^2-sin(x+2y))=d/dx(2x)ddx(xy2−sin(x+2y))=ddx(2x)
d/dx(xy^2)-d/dx(sin(x+2y))=d/dx(2x)ddx(xy2)−ddx(sin(x+2y))=ddx(2x)
x d/dx(y^2) + y^2(1)-cos(x+2y)d/dx(x+2y)=2xddx(y2)+y2(1)−cos(x+2y)ddx(x+2y)=2
x 2ydy/dx + y^2-cos(x+2y)d/dx(x)+d/dx(2y)=2x2ydydx+y2−cos(x+2y)ddx(x)+ddx(2y)=2
x 2ydy/dx + y^2-cos(x+2y)+2dy/dx=2x2ydydx+y2−cos(x+2y)+2dydx=2
2xydy/dx +2dy/dx=2-y^2+cos(x+2y)2xydydx+2dydx=2−y2+cos(x+2y)
dy/dx(2xy +2)=2-y^2+cos(x+2y)dydx(2xy+2)=2−y2+cos(x+2y)
dy/dx=(2-y^2+cos(x+2y))/(2xy +2)dydx=2−y2+cos(x+2y)2xy+2