Find all ordered pairs of real numbers (x, y) such that x^2y^2 + 2xy^2 + 5x^2 + 3y^2 + 10x + 5 = 0?

Find all ordered pairs of real numbers (x, y) such that x^2y^2 + 2xy^2 + 5x^2 + 3y^2 + 10x + 5 = 0.

3 Answers
May 6, 2017

The only real values of x and y are (-1,0)

Explanation:

Given:

x^2y^2 + 2xy^2 + 5x^2 + 3y^2 + 10x + 5 = 0

Regroup so that the terms containing x^2 are adjacent:

color(blue)(x^2)y^2 + 2xy^2 + 5color(blue)(x^2) + 3y^2 + 10x + 5 = 0

color(blue)(x^2)y^2 + 5color(blue)(x^2) + 2xy^2 + 3y^2 + 10x + 5 = 0

Remove the common factor:

(y^2 + 5)color(blue)(x^2) + 2xy^2 + 3y^2 + 10x + 5 = 0

Regroup so that the terms containing x are adjacent:

(y^2 + 5)(x^2) + 2color(blue)(x)y^2 + 3y^2 + 10color(blue)(x) + 5 = 0

(y^2 + 5)(x^2) + 2color(blue)(x)y^2 + 10color(blue)(x) + 3y^2 + 5 = 0

Remove the common factor:

(y^2 + 5)x^2 + (2y^2 + 10)color(blue)(x) + 3y^2 + 5 = 0

Please observe that this is a quadratic in color(blue)(x) where color(red)(a=(y^2+5)), color(green)(b=2y^2+10) and color(orange)(c=3y^2+5)

color(red)((y^2 + 5))color(blue)(x^2) + color(green)((2y^2 + 10))color(blue)(x) + color(orange)(3y^2 + 5) = 0

Therefore, we can write x as a function of y, using the quadratic formula:

x = (-2y^2-10+-sqrt((2y^2 + 10)^2-4(y^2 + 5)(3y^2 + 5)))/(2(y^2 + 5))

This can be simplified a bit:

x = -1+-sqrt(1-(3y^2 + 5)/(y^2 + 5))

Please notice that the value under the radical is negative for all values of y except 0.

Therefore, the only real values of x and y are (-1,0)

May 6, 2017

(-1,0)

Explanation:

f(x,y)=x^2y^2 + 2xy^2 + 5x^2 + 3y^2 + 10x + 5 =0

has a minimum at -1,0 and at this point

f(-1,0)=0 so the only real ordered pair is (-1,0)

NOTE:

The stationary points are determined solving

grad f = 0 giving

((x,y),(-1 - i sqrt[2],-i sqrt[5]),( -1 - i sqrt[2], i sqrt[5]),( -1 + i sqrt[2], -i sqrt[5]),( -1 +i sqrt[2], i sqrt[5]),(-1,0))

Also the Hessian or grad^2f at (-1,0) gives

H=((10,0),(0,4)) which qualifies that point as a local minimum.

May 6, 2017

(x, y) = (-1, 0)

Explanation:

Given:

x^2y^2+2xy^2+5x^2+3y^2+10x+5=0

We can rearrange this as a quadratic in x as:

(y^2+5)x^2+(2y^2+10)x+(3y^2+5) = 0

This is in the form:

ax^2+bx+c = 0

with:

{(a = y^2+5), (b=2y^2+10), (c=3y^2+5):}

This has discriminant Delta given by the formula:

Delta = b^2-4ac

color(white)(Delta) = (2y^2+10)^2-4(y^2+5)(3y^2+5)

color(white)(Delta) = (4y^4+40y^2+100)-4(3y^4+20y^2+25)

color(white)(Delta) = (4y^4+40y^2+100)-(12y^4+80y^2+100)

color(white)(Delta) = -8y^4-40y^2

So if Delta >= 0 (as required for real roots) then y=0

If y=0 then the given equation reduces to:

0 = 5x^2+10x+5 = 5(x^2+2x+1) = 5(x+1)^2

Hence x=-1