Find 2 positive integers greater than 1 whose product is 6^6 + 8^4 + 27^466+84+274?

2 Answers
Jul 27, 2017

See a solution process below:

Explanation:

6^6 = 46,65666=46,656

8^4 = 4,09684=4,096

27^4 = 531,441274=531,441

Therefore:

6^6 + 8^4 + 27^4 = 46,656 + 4096 + 531,441 = 582,19366+84+274=46,656+4096+531,441=582,193

582,193 = 577 xx 1009582,193=577×1009

Jul 27, 2017

6^6+8^4+27^4=577*100966+84+274=5771009

Explanation:

Calling a = 3^6a=36 and b = 2^6b=26 we have

6^6+8^4+27^4=a*b+b^2+a^2 = (a+b)^2-a*b66+84+274=ab+b2+a2=(a+b)2ab or using the identity

u^2-v^2=(u-v)(u+v)u2v2=(uv)(u+v)

(2^6+3^6)^2-(2^3*3^3)^2 = (2^6+3^6-2^3*3^3)(2^6+3^6+2^3*3^3)(26+36)2(2333)2=(26+362333)(26+36+2333) or

6^6+8^4+27^4=577*100966+84+274=5771009