How do you factor (b−c)^3+(c−a)^3+(a−b)^3(bc)3+(ca)3+(ab)3?

1 Answer
Apr 1, 2017

3(b-c)(c-a)(a-b).3(bc)(ca)(ab).

Explanation:

If we use the following Result, we can immediately factorise the

given Exp.=3(b-c)(c-a)(a-b).=3(bc)(ca)(ab).

Result : x+y+z=0 rArr x^3+y^3+z^3=3xyz.x+y+z=0x3+y3+z3=3xyz.

Otherwise, consider the following :

Let, u=b-c, v=c-a rArr u+v=b-a=-(a-b).u=bc,v=cau+v=ba=(ab).

Now, The Exp.=u^3+v^3+{-(u+v)}^3,=u3+v3+{(u+v)}3,

=u^3+v^3-(u+v)^3,=u3+v3(u+v)3,

=u^3+v^3-{u^3+v^3+3uv(u+v)},=u3+v3{u3+v3+3uv(u+v)},

=-3uv(u+v)=3uv{-(u+v)},=3uv(u+v)=3uv{(u+v)},

:." The Exp.="3(b-c)(c-a)(a-b).

Enjoy Maths.!