F(x)=x^2 +6x-8 Show that if the equation f(x+a)=a has no real root then a^2<4(b-a)?

1 Answer
May 8, 2018

(a+17) lt 0, or a lt -17.

Explanation:

Prerequisite :

The quadr. eqn. ax^2+bx+c=0 has no real roots.

iff b^2-4ac lt 0.

We see that, for f(x)=x^2+6x-8,

f(x+a)=a rArr (x+a)^2+6(x+a)-8=a

rArr x^2+(2a+6)x+(a^2+5a-8)=0.

Since this quadr. eqn. has no real roots,

(2a+6)^2-4(1)(a^2+5a-8) lt 0.

:. 4(a+3)^2-4(a^2+5a-8) lt 0.

:. 4{(a^2+6a+9)-(a^2+5a-8)} lt 0, i.e.,

4(a+17) lt 0.

:. (a+17) lt 0, or a lt -17.