Explain and Prove That ? Sec(270°-theta)Sec(90°-theta)-tan(270°-theta)tan(90°+theta) = -1

1 Answer
May 2, 2018

Please see below.

Explanation:

.

sec(270θ)sec(90θ)tan(270θ)tan(90+θ)=1

1cos(270θ)1cos(90θ)sin(270θ)cos(270θ)sin(90+θ)cos(90+θ)=1

We have the following four identities:

sin(α+β)=sinαcosβ+cosαsinβ

sin(αβ)=sinαcosβcosαsinβ

cos(α+β)=cosαcosβsinαsinβ

cos(αβ)=cosαcosβ+sinαsinβ

Therefore,

cos(270θ)=cos270cosθ+sin270sinθ=(0)cosθ+(1)sinθ=0sinθ=sinθ

cos(90θ)=cos90cosθ+sin90sinθ=(0)cosθ+(1)sinθ=0+sinθ=sinθ

sin(270θ)=sin270cosθcos270sinθ=(1)cosθ(0)sinθ=cosθ0=cosθ

sin(90+θ)=sin90cosθ+cos90sinθ=(1)cosθ+(0)sinθ=cosθ+0=cosθ

cos(90+θ)=cos90cosθsin90sinθ=(0)cosθ(1)sinθ=0sinθ=sinθ

Now, let's substitute all the pieces:

1sinθ1sinθcosθsinθcosθsinθ=1sin2θ+cos2θsin2θ=

1+cos2θsin2θ=(1cos2θ)sin2θ=sin2θsin2θ=1