Evaluate the integration of : (co3x-x^2)(sin3x-x^3)dx?

1 Answer
May 1, 2018

I=1/3ln(abs(sin(3x)-x^3))+CI=13ln(sin(3x)x3)+C

Explanation:

We want to solve

I=int(cos(3x)-x^2)/(sin(3x)-x^3)dxI=cos(3x)x2sin(3x)x3dx

Make a substitution

color(blue)(u=sin(3x)-x^3=>du=3(cos(3x)-x^2)dxu=sin(3x)x3du=3(cos(3x)x2)dx

I=int(cos(3x)-x^2)/(u*3(cos(3x)-x^2))duI=cos(3x)x2u3(cos(3x)x2)du

color(white)(I)=1/3int1/uduI=131udu

color(white)(I)=1/3ln(abs(u))+CI=13ln(|u|)+C

Substitute back color(blue)(u=sin(3x)-x^3)u=sin(3x)x3

I=1/3ln(abs(sin(3x)-x^3))+CI=13ln(sin(3x)x3)+C