Eliminate θ from the relations: sec θ=1-b tan θ and a²sec²θ=5+b²tan²θ?

1 Answer
Jun 14, 2018

Please see the explanation below

Explanation:

We need

tan^2theta+1=sec^2theta

Therefore,

From the second relation

a^2sec^2theta=5+b^2tan^2theta

a^2sec^2theta=5+b^2(sec^2theta-1)

a^2sec^2theta=5+b^2sec^2theta-b^2

sec^2theta=(5-b^2)/(a^2-b^2)

sectheta=sqrt((5-b^2)/(a^2-b^2))

tan^2theta=sec^2theta-1=(5-b^2)/(a^2-b^2)-1

=(5-b^2-a^2+b^2)/(a^2-b^2)

=(5-a^2)/(a^2-b^2)

tantheta=sqrt((5-a^2)/(a^2-b^2))

Substituting in the first equation

sectheta=1-btantheta

sqrt((5-b^2)/(a^2-b^2))=1-b*sqrt((5-a^2)/(a^2-b^2))

This is the relation without theta